Fast Ultrasound Simulation in K-space

Torbjørn Hergum, NTNU

Fast Ultrasound Simulation in K-space

- Want tool for validation of 3D quantitative methods
- Fusk = Fast Ultrasound simulation in K-space
- Fusk simulates one frame of a 3D ventricle in ~20 seconds
- Point scatterers as input object, for instance from FEM-simulations

Norwegian University of Science and Technology

www.ntnu.no

4

Simulated ultrasound image

-20

-10

Results

Comparing beam profiles with Field 2

www.ntnu.no

6

Results

Comparing cyst phantoms

7

Norwegian University of Science and Technology

Results

Comparing cyst phantoms

Scatterer density, random pos.

www.ntnu.no

9

Figure by Fredrik Orderud

Intensity variations in myocard is not reproduced with point scatterer phantoms

Backscatter depends on fiber angle

Examining septum from different angles makes the bright line shift sideways

Backscatter depends on fiber angle

Examining septum from different angles makes the bright line shift sideways

Backscatter depends on fiber angle

Examining septum from different angles makes the bright line shift sideways

Backscatter void not just attenuation: no shadow beneath

Fiber direction estimated for layers through septum

www.ntnu.no

Estimated fiber angle of the sample

- These fiber angles used for simulation
- Initially point scatterers with gaussian amplitudes
- Filtered with directional smoothing

Result

Bright line in simulations matches reality